L'INFERENZA STATISTICA SECONDO BAYES, FISHER E NEYMAN-PEARSON
نویسندگان
چکیده
منابع مشابه
General Testing Fisher , Neyman , Pearson , and Bayes
One of the famous controversies in statistics is the dispute between Fisher and Neyman-Pearson about the proper way to conduct a test. Hubbard and Bayarri (2003) gave an excellent account of the issues involved in the controversy. Another famous controversy is between Fisher and almost all Bayesians. Fisher (1956) discussed one side of these controversies. Berger’s Fisher lecture attempted to c...
متن کاملGeneralized Neyman - Pearson Lemma
We extend the classical Neyman-Pearson theory for testing composite hypotheses versus composite alternatives, using a convex duality approach as in Witting (1985). Results of Aubin & Ekeland (1984) from non-smooth convex analysis are employed, along with a theorem of Komll os (1967), in order to establish the existence of a max-min optimal test and to investigate its properties. The theory is i...
متن کاملDesign and Performance Analysis of Bayesian, Neyman-Pearson and Competitive Neyman-Pearson Voice Activity Detectors
In this paper, the Bayesian, Neyman-Pearson and Competitive Neyman-Pearson detection approaches are analyzed using a perceptually modified Ephraim-Malah (PEM) model, based on which a few practical voice activity detectors are developed. The voice activity detection is treated as a composite hypothesis testing problem with a free parameter formed by the prior signal-to-noise ratio (SNR). It is r...
متن کاملNeyman-Pearson classification under a strict constraint
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i), its probability of type I error is below a pre-specifi...
متن کاملNeyman-Pearson Classification, Convexity and Stochastic Constraints
Motivated by problems of anomaly detection, this paper implements the Neyman-Pearson paradigm to deal with asymmetric errors in binary classification with a convex loss. Given a finite collection of classifiers, we combine them and obtain a new classifier that satisfies simultaneously the two following properties with high probability: (i) its probability of type I error is below a pre-specifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Istituto Lombardo - Accademia di Scienze e Lettere • Rendiconti di Lettere
سال: 2020
ISSN: 2384-9150
DOI: 10.4081/let.2019.679